3.18.34 \(\int \frac {(a d e+(c d^2+a e^2) x+c d e x^2)^{5/2}}{(d+e x)^{5/2}} \, dx\)

Optimal. Leaf size=48 \[ \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{7 c d (d+e x)^{7/2}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.02, antiderivative size = 48, normalized size of antiderivative = 1.00, number of steps used = 1, number of rules used = 1, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {648} \begin {gather*} \frac {2 \left (x \left (a e^2+c d^2\right )+a d e+c d e x^2\right )^{7/2}}{7 c d (d+e x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(5/2),x]

[Out]

(2*(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(7/2))/(7*c*d*(d + e*x)^(7/2))

Rule 648

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(e*(d + e*x)^(m - 1)
*(a + b*x + c*x^2)^(p + 1))/(c*(p + 1)), x] /; FreeQ[{a, b, c, d, e, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c
*d^2 - b*d*e + a*e^2, 0] &&  !IntegerQ[p] && EqQ[m + p, 0]

Rubi steps

\begin {align*} \int \frac {\left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{5/2}}{(d+e x)^{5/2}} \, dx &=\frac {2 \left (a d e+\left (c d^2+a e^2\right ) x+c d e x^2\right )^{7/2}}{7 c d (d+e x)^{7/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.04, size = 37, normalized size = 0.77 \begin {gather*} \frac {2 ((d+e x) (a e+c d x))^{7/2}}{7 c d (d+e x)^{7/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(5/2),x]

[Out]

(2*((a*e + c*d*x)*(d + e*x))^(7/2))/(7*c*d*(d + e*x)^(7/2))

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.81, size = 45, normalized size = 0.94 \begin {gather*} \frac {2 (a e+c d x) ((d+e x) (a e+c d x))^{5/2}}{7 c d (d+e x)^{5/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(a*d*e + (c*d^2 + a*e^2)*x + c*d*e*x^2)^(5/2)/(d + e*x)^(5/2),x]

[Out]

(2*(a*e + c*d*x)*((a*e + c*d*x)*(d + e*x))^(5/2))/(7*c*d*(d + e*x)^(5/2))

________________________________________________________________________________________

fricas [B]  time = 0.41, size = 91, normalized size = 1.90 \begin {gather*} \frac {2 \, {\left (c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} e x^{2} + 3 \, a^{2} c d e^{2} x + a^{3} e^{3}\right )} \sqrt {c d e x^{2} + a d e + {\left (c d^{2} + a e^{2}\right )} x} \sqrt {e x + d}}{7 \, {\left (c d e x + c d^{2}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="fricas")

[Out]

2/7*(c^3*d^3*x^3 + 3*a*c^2*d^2*e*x^2 + 3*a^2*c*d*e^2*x + a^3*e^3)*sqrt(c*d*e*x^2 + a*d*e + (c*d^2 + a*e^2)*x)*
sqrt(e*x + d)/(c*d*e*x + c*d^2)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:inde
x.cc index_m operator + Error: Bad Argument Valueindex.cc index_m operator + Error: Bad Argument Valueindex.cc
 index_m operator + Error: Bad Argument ValueEvaluation time: 3.16Done

________________________________________________________________________________________

maple [A]  time = 0.04, size = 50, normalized size = 1.04 \begin {gather*} \frac {2 \left (c d x +a e \right ) \left (c d e \,x^{2}+a \,e^{2} x +c \,d^{2} x +a d e \right )^{\frac {5}{2}}}{7 \left (e x +d \right )^{\frac {5}{2}} c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*e*x^2+a*d*e+(a*e^2+c*d^2)*x)^(5/2)/(e*x+d)^(5/2),x)

[Out]

2/7*(c*d*x+a*e)*(c*d*e*x^2+a*e^2*x+c*d^2*x+a*d*e)^(5/2)/c/d/(e*x+d)^(5/2)

________________________________________________________________________________________

maxima [A]  time = 1.27, size = 60, normalized size = 1.25 \begin {gather*} \frac {2 \, {\left (c^{3} d^{3} x^{3} + 3 \, a c^{2} d^{2} e x^{2} + 3 \, a^{2} c d e^{2} x + a^{3} e^{3}\right )} \sqrt {c d x + a e}}{7 \, c d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e^2+c*d^2)*x+c*d*e*x^2)^(5/2)/(e*x+d)^(5/2),x, algorithm="maxima")

[Out]

2/7*(c^3*d^3*x^3 + 3*a*c^2*d^2*e*x^2 + 3*a^2*c*d*e^2*x + a^3*e^3)*sqrt(c*d*x + a*e)/(c*d)

________________________________________________________________________________________

mupad [B]  time = 0.82, size = 79, normalized size = 1.65 \begin {gather*} \frac {\sqrt {c\,d\,e\,x^2+\left (c\,d^2+a\,e^2\right )\,x+a\,d\,e}\,\left (\frac {6\,a^2\,e^2\,x}{7}+\frac {2\,c^2\,d^2\,x^3}{7}+\frac {2\,a^3\,e^3}{7\,c\,d}+\frac {6\,a\,c\,d\,e\,x^2}{7}\right )}{\sqrt {d+e\,x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(5/2)/(d + e*x)^(5/2),x)

[Out]

((x*(a*e^2 + c*d^2) + a*d*e + c*d*e*x^2)^(1/2)*((6*a^2*e^2*x)/7 + (2*c^2*d^2*x^3)/7 + (2*a^3*e^3)/(7*c*d) + (6
*a*c*d*e*x^2)/7))/(d + e*x)^(1/2)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a*d*e+(a*e**2+c*d**2)*x+c*d*e*x**2)**(5/2)/(e*x+d)**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________